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Expressions for the conductivity and Hall 
coefficient in the framework of the 
effective-relaxation-time multidimensional 
conduction model 
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An effective-relaxation-time is used for representing the effects of electronic scattering in thin 
metallic films from sources other than grain boundaries; the total conductivity of the film is 
then expressed in terms of the product of an alternative Fuchs-Sondheimer function with an 
effective grain-boundary multidimensional function. The reduced Hall coefficient is then 
obtained in the form of the product of the reduced Fuchs-Sondheimer Hall coefficient with an 
effective reduced grain-boundary Hall coefficient. Qualitative agreement with experimental 
data is obtained. 

1. I n t roduct ion  
An effective-relaxation-time model [1] has been pre- 
viously proposed for giving alternative expressions 
[1, 2] of the Mayadas-Shatzkes  equations [3]. 

Since the validity of the Mayadas-Shatzkes 
equations is not firmly established in some cases [2, 4, 
5] and since some limiting forms of  the conductivity 
equations obtained in the framework of multidimen- 
sional conduction models [2] can be regarded [6] as 
alternative expressions of the Fuchs-Sondheimer 
function [7] (when the grain size takes infinite values), 
we attempt in this short paper to give an insight into 
the validity of the effective-relaxation-time procedure 
in the framework of a multidimensional model. 

2. The e f f e c t i v e - r e l a x a t i o n - t i m e  
mul t id imens iona l  model  

2.1. Defining the effective-relaxation-time 
An effective relaxation time 'co~ is used for representing 
the effects of electronic scattering from sources other 
than grain boundaries, i.e. the background and 
external-surface scatterings [1, 2]. The effects of  scat- 
tering at grain boundaries is represented by a grain- 
boundary relaxation time, ~Tg b [ 8 ] ,  

As usual [2], the resultant relaxation time Zr, is 
defined from the partial relaxation times by the follow- 
ing relation: 

"cr  1 ~--- Teff 1 -t- 'cgb l ( l )  

An alternative form is 

,.Or I = 'ceffl ( 1  + "Ceff'['~ 1 ) ( 2 )  

Since the electrical conductivity is proportional to 
the relaxation time, provided that it does not depend 
on coordinates [2], an effective relaxation time, inde- 
pendent of the geometrical parameters of the films, 
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may be defined from the relation 

~Fs/~0 -~ Ze~/Z0 (3) 
where a0 is the bulk conductivity, 'co the electron relax- 
ation time in the bulk material and avs the conductiv- 
ity of a thin film exhibiting Fuchs-Sondheimer size 
effect [2, 7]. 

An analytical expression for avs/ao, much simpler 
than the Fuchs-Sondheimer function [7], has been 
recently proposed [6]: 

O'FS/O" 0 = AFS(P ) (4) 
with 

# = d , ~ o l ( 1  -~  p)[2(1 - P)I- '  (5) 

Avs(#) = 3#[# -- 1 +  (1 -- # : ) l n ( 1  + # l)] (6) 

where d is the film thickness, 2 o the bulk mean free 
path and p the usual specular electron reflection coef- 
ficient at the film surface [2, 7]. 

2.2. Expression for the film conductivity 
The expression for the film conductivity, o-f, is then 
obtained from the general relation [2, 7] 

3 
ar/er° = 4 fo d0zr%l sin30 (7) 

By introducing Equation 2, Equation 7 becomes 

af/ao ~ 3('cell~% ) fo d0(1 + 'cefr'cgb=) -1 sin30 (8) 

Previous calculations [9] have given the analytical 
solution of Equation 7 in the case where only grain- 
boundary scattering is operative, i.e. for 

17 r I = 'cgb I "4- "C O 1 (9) 
and 

3 )~  
agb/ao = ~ fo d0(1 + Z0Zgb I sin30 (10) 
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Crgb/~0 = Agb(V) (11) 

with [10] 

v = Dg2o'(1 + t)[2(1 - t)]-' (12) 

Agb(V) = 2~, (7, 2 + 1 -- \ C, J J 

v ~ C 2 (13) 

where Dg is the average grain size and t the statistical 
transmission coefficient at the grain boundary, and 

Ci = 1 - C (14a) 

for polycrystalline films [2, 1l] 

Cl = -- C (14b) 

for columnar films [11] with C = 4/~c. 
From comparing Equations 3, 8 and 10, it is clear 

that 

O'f ~ aFSAgb(Vao/aFS ) (15) 
Introducing 

VFS = VaO/aFS (16) 

Equation 15 takes the general form of an effective- 
mean-free-path equation [1, 2]: 

O" r ~ O-FSAgb(VFs) ~ O'FSO'gbYFS/a 0 (17) 

whose asymmetric form is 

~r0 \ ~ o / 2  ~0 / 

2.3. Numerical  da ta  
Numerical solutions to Equation 15 have been com- 
puted and compared with those derived from the 
following exact equation [12] obtained in the frame- 
work of the multidimensional model: 

af/ao = A(b, 7) (18) 

T A B L E  I Relative deviation (%) of the approximate equation 
(Equation 17) from the exact one (Equation 18), in the case of 
polycrystalline structure 

,// v 

10 5 2 1.5 1 0.5 0.1 

0.01 10.807 6.523 10.995 13.601 17.948 26.350 36.824 
0.03 3.442 4.965 10.125 12.288 15.562 20.702 19.568 
0.05 2.936 4.539 9.085 10.859 13.399 16.748 13.026 
0.07 2.312 4.207 8.184 9.672 11.698 13.975 9.587 
0.09 2.219 3.872 7.422 8.693 10.345 11.930 7.479 
0.10 2.107 3.731 7.087 8.266 9.768 11.097 6.707 
0.30 1.210 2.066 3.539 3.941 4.314 4.208 1.845 
0.50 0.805 1.366 2.230 2.432 2.576 2.365 0.934 
0.70 0.607 0.994 1.573 1.694 1.760 1.563 0.585 
0.90 0.469 0.766 1.189 1.270 1.302 1.131 0.409 
1.00 0.424 0.684 1.052 1.121 1.144 0.985 0.352 
3.00 0.120 0.189 0.273 0.283 0.279 0.226 0.074 
5.00 0.065 0.102 0.146 0.205 0.145 0.117 0.038 
7.00 0.049 0.069 0.341 0.093 0.097 0.077 0.025 
9.00 0.036 0.050 0.059 0.074 0.072 0,057 0.018 

10.0 0.030 0.044 0.061 0.064 0.063 0.050 0.016 
30.0 0.021 0.006 0.019 0.019 0.019 0.015 0.005 
50.0 0.010 0.013 0.015 0.015 0.014 0.010 0.003 
70.0 0.050 0.002 0.004 0.005 0.005 0.004 0.001 
90.0 0.027 0.016 0.008 0.006 0.004 0.002 0.000 

with 
b = ,u -I + Clv i (19) 

7 = b-l( 1 + CSv-l)  (20) 

C = 4/~ (21) 

Cj,/~ and v have been defined above (Equations 5, 12, 
14a and 8b); then 

A(b, 7) = ~b[7 - } + (1 - 72 ) l n (1  + 7-')1 

As shown in Tables I and II for polycrystalline and 
columnar films, respectively, for a given value of v 
the relative deviation of the approximate equation 
(Equation 17) from the exact one (Equation 18) is less 
than 10% when # takes values larger than a minimum 
value of/t,/Zm~ .; the variations of #m~, with v are given 
respectively for polycrystalline and columnar film in 
Figs l a and b (Curves 1). 

3. Practical point of v iew 
3.1. Comparison between approximate 

expressions of Equation 18 
Previous theoretical studies [13] have proposed the 
following approximate equation: 

with 

provided that 

A(b, 7) ~ (by + Csb) -I 

C2 = 0.375 

(22) 

(22a) 

7 ~> 0.4 (23) 

From Equations 19 and 20 this limiting condition 
becomes 

Hence, for a given value of v,/~ must be larger than 
a minimum value #m whose variations with v are 
drawn for a polycrystalline film in Fig. la (Curve 2) 
and for a columnar film in Fig. lb (Curve 3). 

T A B LE  I 1 Relative deviation (%) of  the approximate equation 
(Equation 17) from the exact one (Equation 18), in the case of 

columnar  film 

10 5 2 1.5 1 0.5 0.1 

0.01 2.887 5.461 11.826 14.749 19.671 29.875 49.357 
0.03 2.964 5.542 11.715 14.401 18.687 26.420 32.216 
0.05 2.875 5.347 11.076 13.476 17.159 23,176 24.128 
0.07 2.765 5.115 10.422 12.577 15.785 20.622 19.329 
0.09 2.655 5,884 9.817 11.770 14.602 18.584 16.121 
0.10 2.600 4.774 9.538 11.401 14.073 17.712 14.882 
0.30 1.8i6 3.260 6.067 7.020 8.202 9.197 5.711 
0.50 1.407 2.477 4.460 5.085 5.801 6.202 3.444 
0,70 1.146 1.999 3.528 3.988 4.486 4.666 2.437 
0.90 0.967 1.677 2.918 3.279 3,657 3.733 1.875 
1.00 0.897 1.552 2.686 3,011 3.343 3.392 1.678 
3.00 0.367 0.622 1.034 1.139 1.23l 1.186 0.528 
5.00 0.231 0.389 0.639 0.701 0.752 0.715 0.311 
7.00 0.173 0.283 0.463 0.506 0.541 0.512 0.220 
9.00 0.120 0.222 0.362 0.396 0.423 0,398 0.170 

10.0 0.116 0.201 0.327 0.357 0.381 0.358 0.152 
30.0 0.041 0.068 0.1ll  0.121 0.128 0.119 0.050 
50.0 0.031 0.046 0.071 0.076 0.080 0.074 0.030 
70.0 0.012 0.023 0.043 0.047 0.051 0.048 0.020 
90.0 0.009 0.001 0.020 0.025 0.030 0,031 0.014 
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Figure 1 (a) Variations in/~ with v in the case of polycrystalline film: (1) variation in ]~min with v, (2) variation in #m with v. (b) Variations 
in # with v in the case of columnar structure: (1) variations in ~tmi . with v, (2) p = v, (3) variations in #m with v. 

From Figs la and b it can be concluded that the 
effective-mean-free-path model is convenient when the 
grain boundaries do not act as efficient scatterers. In 
this case Equation 22 may be conveniently used. 

where RHf FS is the Hall coefficient of a thin film in 
which no grain-boundary scattering occurs and RHr gb 
the Hall coefficient of an infinitely thick film in which 
grain-boundary scattering is operative. 

3.2. Expression for the temperature 
coefficient of resistivity and the Hall 
coefficient 

The temperature coefficient of resistivity (TCR), fit, is 
defined as usual by 

d(ln at) 
fir - dT  (24) 

where T is the absolute temperature. 
In a similar way flFS and flgb can be defined from 

Equations 4 and 11 to give 

f i r s ( # )  = flo (1 8 in_ 
l n #  ] 

J ~ g b ( Y )  = fi0 (1 
In 

Oln v ] \ 

(25) 

(26) 

A logarithmic differentiation of Equation 17 gives 

Q In [Agb(VFs)] C9 In VFS (27) 
fir - f i v s  "~ - 8 in YFS 0T 

where, from Equation 16, 

c9 In VFS ~ In v 8 in a0 8 in OFS 
oPT -- ~T + oPT 0T (28) 

i.e. 

In VFS 
- -  flVS (28a) 

0T 

Hence Equation 27 becomes 

flgb VFS 
fit "-~ ~ flFS (29) 

The reduced Hall coefficient of the film, RHf/R.o 
(RHo is the Hall coefficient of the bulk material) can be 
expressed [14, 15] in terms of  the product of the 
reduced reciprocal conductivity with the reduced 
TCR, i.e. 

R. t  fir ao 
- ( 30 )  

R.o Gf fl0 

Combining Equations 17 and 29 gives 

RHf RHf-FS RHf-gb VFS 
- -  ~ ( 3 1 )  
RHo RHo RHo 

3.3. Qualitative interpretations of the shifts in 
the Hall coefficient during the ageing 
procedure 

3.3.1. Ordinary Hall coefficient of nickel film 
Irreversible shifts in the ordinary Hall coefficient of 
thin nickel films, R.r, have been reported previously 
by De Groot  [16] (Fig. 2); a recent reinterpretation of 
the electrical conduction and Hall effect in annealed 
films [17] has given evidence for the existence of  a 
polycrystalline structure. Consequently the observed 
variations in R m (Fig. 2) before and after annealing 
[16] can be described by Equation 31. 

Since the ageing procedure induces an increase in 
the conductivity due to an increase in either 2o or p 
[18], an increase in the value o f#  and a decrease in that 
of R,f FS can be predicted; on the other hand a 
decrease in VFS, at constant grain size, induces an 
increase in RHf_g b. Since the effect of the grain bound- 
ary does not modify markedly the Hall coefficient, 
except for very fine grains [12, 19, 20], the shift in RHr 
is mainly due to RHf-FS. It is consistent with the fact 
that Curves 1 and 2 in Fig. 2 may be made to coincide 
by changing the origin of the coordinates (Fig. 3). 

Moreover Equation 31 gives a qualitative inter- 
pretation of  the fact that the value of R.f depends on 
the deposition rate [16] since a variation in the average 
grain size is probable in this case, by analogy with the 
results related to other metals [21]. 
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Figure 2 The variation of the ordinary Hall coefficient with thick- 
ness for nickel films (from De Groot [16]): (1) as-deposited films, (2) 
annealed films at 273 K. 
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Figure 3 The shift in the coordinates allowing the coincidence of 
Curves I and 2 from Fig. 2. 

3.3.2. Ordinary Hall coefficient of N i -P  films 
In the case of chemically deposited N i - P  layers 
annealed at temperatures varying from 100 to 400 ° C, 
Viard [22] observed variations in the ordinary Hall 
coefficient, R0, which depend markedly on the film 
thickness and annealing temperature (Fig. 4). In the 
case of films annealed at 400 ° C, which exhibit a crys- 
talline structure [23], a marked size effect in R0 occurs 
at very low thickness whereas it occurs for much larger 
values of thickness in the case of incompletely crystal- 
lized layers. 

A general study [24] has shown that the size effect in 
the Hall coefficient can be represented (at its first step) 
by the approximate expression 

Hence 

and 

RHf/RHo ~ 1 + 0.067 -2 

RHf_Fs/RHo ~ 1 + O.06ff 2 

(32) 

(33) 

1 + 0.06 / / v + C2/ 2 \ (34) RHr-gb 
R H o  ~ C l  / 

Since the experimental variations in RHf with thick- 
ness roughly satisfy Equation 33 (Fig. 5) it can be 
concluded that the grain boundaries do not act as 
efficient scatterers. Hence, from Equation 17 it can be 
predicted that the size effect is mainly determined by 
RHr FS and is therefore slightly modified by the ageing 
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Figure 4 The variations in the ordinary Hall coefficient of Ni P 
layers with the thickness for different annealing temperature (from 
Viard [22]): (1) 100°C, (2) 200°C, (3) 300°C, (4) 400°C. 
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Figure 5 The variations of the ordinary Hall coefficient of Ni P 
layers with the reciprocal square of the thickness (from Curve 1 of 
Fig. 4). 

temperature (from 100 to 300 ° C), in good agreement 
with experiments (Fig. 4). 

4. C o n c l u s i o n  
The effective-relaxation-time multidimensional con- 
duction model can be regarded as a convenient tool 
for separating the effects of the ageing procedure on 
the surface and grain-boundary scatterings. Moreover 
it gives an insight into the evolution of the Hall coef- 
ficient when thermal treatments are operative. 
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